magnitude more important than those arising out of the additional cross-terms when a $[(3-\mathrm{by}-3)+(6-\mathrm{by}-6)]$ method is replaced by a $9-b y-9$ one. This is quite evident in the middle stages of refinement.

The author stands in obligation to many of his colleagues for the benefit of professional argument and to Burroughs Corporation for placing computing equipment at his disposal. Prof. Dr C. H. MacGillavry contributed the structure and the Weissenberg data of the triclinic centric monocalciumphosphite monohydrate as a guinca pig for our experiments. Ir Willem J. van de Lindt of Burroughs Professional Services was good enough to check over the computational detail of the relaxation procedures and to point out certain fast variants.

## References

Ahmed, F. R. \& Cruickshank, D. W. J. (1953). Acta Cryst. 6, 765.
Воотн, A. D. (1946). Trans. Faraday Soc. 42, 448.
Busing, W. R. \& Levy, H. A. (1959). Acta Cryst. 10, 351. Cruickshank, D. W. J. (1952). Acta Cryst. 5, 511.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 747, 754. Eichmorn, E. L. (1956). Acta Cryst. 9, 787.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Jeffrey, G. A. \& Shiono, K. (1959). Acta Cryst. 12, 819. Rossmann, M. (. et al. (1959). Acta Cryst. 10, 530.
Sparks, R. A. et al. (1956). Acta Cryst. 9, 350.
Sparks, R. A. et al. (1956). Acta Cryst. 10, 88.
Sparks, R. A. (1960). Paper read at Clasgow Computing Conference. Computing Mcthods and the Phase Problem in X-ray Crystal Analysis, p. 170. (New York: Pergamon Press, 1961).

# The Crystal Structure of Cobalt Sulfate Hexahydrate* 

By Allan Zalkin, Helena Ruben and David H. Templeton<br>Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California, U.S.A.

(Received 2 October 1961)
$\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the monoclinic system, $\mathrm{C} 2 / \mathrm{c}$. The cell dimensions are

$$
a=10.032, b=7.233, c=24.261 \AA ; \beta=98.37^{\circ} .
$$

There are 8 molecules in the unit cell; the X-ray density is $2.006 \mathrm{~g} . \mathrm{cm} .^{-3}$. The structure consists of sulfate tetrahedra and cobalt-centered water octahedra linked by a three dimensional network of hydrogen bonds. Eleven of the twelve hydrogen bonds are between water and sulfate oxygens; there is one water to water hydrogen bond. The average $\mathrm{S}-\mathrm{O}$ sulfate distance is $1.46 \AA$; the average $\mathrm{Co}-\mathrm{O}$ distance in the water octahedra is $2 \cdot 11 \AA$; and the average hydrogen bond ( $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ ) is $2.8 \AA$. There are two crystallographically different $\mathrm{Co}^{++}$ions in the structure. The hydrogen atoms are assigned an ordered configuration which would not contribute to residual entropy at low temperatures.

## Introduction

Calorimetric measurements by Rao \& Giauque (1960) showed some unaccountable residual entropy in crystals of $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ at low temperatures. We have investigated the crystal structure in search of an explanation of the disorder. The resulting structure offers no possibility of disordered rings of hydrogen bonds such as were found in $\mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O}$ (Ruben, Templeton, Rosenstein \& Olovsson, 1960), nor do we find any other explanation of the entropy discrepancy.

The crystal morphology was described by Marignac (1855), and Groth (1908).

[^0]
## Experimental

Crystals of $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ were grown from a saturated solution at $\tilde{5} 0-55^{\circ}$. The intensity data were obtained by multiple film Weissenberg techniques. The film photography was done using Fe $K x(\lambda=1.9373 \AA)$ X-rays, on Ilford Industrial G film. Intensities were estimated visually by comparison with a calibrated set of spots. The scaling factor used between multiple films of the same layer was $\exp (2 \cdot 0 \sec \mu)$, where $\mu$ is the equi-inclination angle and $2 \cdot 0$ is an empirically determined constant from the data; this scaling factor varied from 7.4 at the zero layer $\left(\mu=0^{\circ}\right)$, to 12.9 at the sixteenth layer ( $\mu=38 \cdot 7^{\circ}$ ).

The first single crystal of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was enclosed in a $0 \cdot 1 \mathrm{~mm}$. glass capillary. At the time we felt the
crystals would be unstable in the open atmosphere, however, later we found the crystals to be sufficiently stable to handle in air. This first crystal was aligned about the [101] direction. Seventeen layers were photographed and 737 reflections were observed of which 125 were below the detection limit and called zero. Later a second crystal was aligned about its $b$ axis and photographed in air. An additional 99 zero layer reflections were measured of which 10 were below the detection limit. The sum total of intensities used was 836 , of which 135 were recorded as zero.

For greater accuracy, the cell dimensions of $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ were measured on a General Electric XRD-5 equipped with a goniostat using Mo $K \alpha$ ( $\lambda=0.7107 \AA$ ) X-rays.

In order to solve the structure we found it necessary to take some reflection data from $\mathrm{MgSeO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ both of which are isomorphic with $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$.

A crystal of $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ was grown from its saturated solution at $50-55^{\circ}$. It was aligned about its $b$ axis and photographed with $\mathrm{Fe} K x$ X-rays with the Weissenberg technique. Intensities were recorded of 102 h 0 l reflections of which 6 were below the detection limit. Cell dimensions were measured on the goniostat as with the cobalt isomorph.
$\mathrm{MgSeO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ crystals were prepared at room temperature by allowing a filtered solution of dilute selenic acid and excess MgO to evaporate in an open dish. A crystal was aligned along its $b$ axis and photographed with the Weissenberg technique with $\mathrm{Fe} K \boldsymbol{x}$ X-rays. Intensities were recorded of 102 h 0 l reflections of which 15 were below the detection limit. The cell dimensions were obtained from the Weissenberg films.

## Cell dimensions and space group

The cell dimensions of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are :
$a=10.032+0.004 \AA \quad \beta=98.37 \pm 0.03^{\circ}$ ( $98.7^{\circ}$ by Marignac (1855))
$b=7 \cdot 233 \pm 0 \cdot 003 \AA \quad V=1742 \pm 2 \AA^{3}$
$c=24 \cdot 261 \pm 0 \cdot 010 \AA \quad Z=8$
Space group $=C 2 / c\left(C_{2 h}^{6}\right)$
$a: b: c=1 \cdot 387: 1: 3 \cdot 354$
(1-396:1:3•381 by Marignac (1855))
X-ray density $=2.006$ g.cm. ${ }^{-3}$ : measured density $=$ $2 \cdot 000$ g.cm. ${ }^{-3}$ (Goszner, 1907), $2 \cdot 019$ (Thorpe \& Watt, 1880), 2.017 (Handbook of Chemistry and Physics, 1957).

The characteristic extinctions of the intensities indicated space group $C c$ or $C 2 / c$. As there are 8 molecules in the unit cell and $C 2 / c$ has an 8 fold general position as opposed to 4 for $C c, C 2 / c$ appeared intuitively to be the most likely space group. A 'zero moment test' on the 3 dimensional data was computed (Howells, Phillips \& Rogers, 1950) and the results indicated a center of symmetry, space group $C 2 / c$. The best evidence we have for the space group $C 2 / c$
is the successful solution of a chemically reasonable structure. The cell dimensions of $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ are:

$$
\begin{array}{ll}
a=10 \cdot 110 \pm 0 \cdot 005 \AA & c=24 \cdot 41 \pm 0 \cdot 01 \AA \\
b=7 \cdot 212 \pm 0 \cdot 004 \AA & \beta=98 \cdot 30 \pm 0 \cdot 04^{\circ}
\end{array}
$$

The cell dimensions of $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are :

$$
\begin{array}{ll}
a=10 \cdot 36 \pm 0 \cdot 03 \AA & c=25 \cdot 1 \pm 0 \cdot 1 \AA \\
b=7 \cdot 38 \pm 0 \cdot 04 \AA & \beta=98 \cdot 1 \pm 0 \cdot 2^{\circ}
\end{array}
$$

## Determination of structure

The three-dimensional Patterson function of $\mathrm{CoSO}_{4}$. $6 \mathrm{H}_{2} \mathrm{O}$ was computed. Attempts were made to associate the larger peaks with $\mathrm{Co}-\mathrm{Co}, \mathrm{S}-\mathrm{S}$, and $\mathrm{Co}-\mathrm{S}$ vectors; however, two trial structures with Co atoms in general positions failed to give a reasonable Fourier projection in the $b$ direction. Later it was learned that Co atoms are in two sets of special positions.

Crystals of the isomorphic compounds $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ were prepared and photographed. From the Patterson projections calculated from the three sets of $h 0 l$ data we found the locations of the Co and S atoms.

Table 1. The hol observed structure factors for $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$

| $h=$ | -10 | -8 | -6 | -4 | -2 | 0 | 2 | 4 | 6 | 8 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $l=0$ | 28 | 49 | 25 | 40 | 38 |  |  |  |  |  |  |
| 2 | 29 | 39 | 0 | 49 | 46 | 0 | 53 | 40 | 17 | 30 | 30 |
| 4 | 37 | 24 | 39 | 34 | 45 | 22 | 64 | 9 | 20 | 34 |  |
| 6 | 29 | 15 | 13 | 38 | 49 | 0 | 86 | 17 | 54 | 18 |  |
| 8 | 0 | 35 | 40 | 42 | 64 | 34 | 7 | 14 | 45 | 44 |  |
| 10 |  | 13 | 18 | 31 | 18 | 39 | 31 | 65 | 40 | 22 |  |
| 12 |  | 0 | 33 | 46 | 16 | 46 | 98 | 64 | 40 | 18 |  |
| 14 |  | 6 | 43 | 27 | 33 | 32 | 25 | 26 | 19 |  |  |
| 16 |  | 38 | 15 | 11 | 11 | 65 | 24 | 13 | 40 |  |  |
| 18 |  | 20 | 21 | 10 | 37 | 33 | 71 | 33 | 34 |  |  |
| 20 |  |  | 0 | 51 | 39 | 46 | 32 | 49 |  |  |  |
| 22 |  |  | 14 | 13 | 17 | 9 | 39 |  |  |  |  |
| 24 |  |  |  | 12 | 38 | 41 |  |  |  |  |  |

Table 2. The hol observed structure factors for $\mathrm{MgSeO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$

|  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $l$ | -10 | -8 | -6 | -4 | -2 | 0 | 2 | 4 | 6 | 8 | 10 |
| $l=0$ | 0 | 47 | 17 | 51 | 25 |  |  |  |  |  |  |
| 2 | 20 | 24 | 33 | 67 | 80 | 0 | 83 | 24 | 37 | 0 | 16 |
| 4 | 20 | 12 | 13 | 50 | 41 | 33 | 56 | 31 | 7 | 27 |  |
| 6 | 21 | 0 | 20 | 20 | 73 | 0 | 114 | 11 | 49 | 8 |  |
| 8 | 0 | 38 | 34 | 0 | 71 | 42 | 10 | 26 | 17 | 24 |  |
| 10 | 11 | 10 | 13 | 20 | 39 | 17 | 15 | 38 | 0 | 13 |  |
| 12 |  | 16 | 16 | 59 | 0 | 50 | 55 | 48 | 11 | 7 |  |
| 14 |  | 0 | 41 | 7 | 45 | 9 | 39 | 17 | 20 |  |  |
| 16 |  | 23 | 0 | 10 | 0 | 58 | 15 | 12 | 21 |  |  |
| 18 |  | 10 | 17 | 10 | 33 | 20 | 59 | 16 | 26 |  |  |
| 20 |  |  | 0 | 32 | 15 | 33 | 15 | 34 |  |  |  |
| 22 |  |  | 15 | 0 | 18 | 0 | 23 |  |  |  |  |
| 24 |  |  |  |  | 13 | 23 |  |  |  |  |  |

A set of trial oxygen positions was obtained fronı an $h 0 l$ Fourier projection of the $\mathrm{MgSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$. The signs of 54 of the 96 non-zero structure factors were estimated from the location of the Mg and S positions.

Table 3. Observed and calculated structure factors for $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$
The observed values are listed above the calculated ones


All of the ten oxygen atoms were found. A new calculation of signs led to a sign change in only two of the original 54 data used. A second Fourier projection using 86 non-zero terms clearly showed the basic arrangement of $\mathrm{SO}_{4}^{--}$tetrahedra and $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{\mathbf{4}^{++}}$ octahedra.

The $h 0 l$ data for the $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{4}$. $6 \mathrm{H}_{2} \mathrm{O}$ are shown in Tables 1 and 2.

In $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ eight cobalt atoms occupy positions $4(a)$ and $4(e)$ :
$4(a) 0,0,0 ; 0,0, \frac{1}{2}+C$ centering.
$4(e) 0, y, \frac{1}{4} ; 0,-y, \frac{3}{4}+C$ centering.

Table 4. Atomic parameters for $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

|  |  | $x$ | $y$ | $z$ | $B$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Co}_{1}$ |  | 0 | 0 | 0 | $3 \cdot 3 \AA^{2}$ |
| $\mathrm{Co}_{2}$ |  | 0 | $0.949 \pm 0.001$ | ! | $3 \cdot 0$ |
| S |  | $0.868 \pm 0.001$ | $0.452 \pm 0.001$ | $0 \cdot 1244 \pm 0.0003$ | $2 \cdot 2$ |
| $\mathrm{O}_{1}$ |  | $0.778 \pm 0.001$ | $0.601 \pm 0.002$ | $0 \cdot 1352 \pm 0.0006$ | $2 \cdot 6$ |
| $\mathrm{O}_{2}$ | Sulfate | $0.980 \pm 0 \cdot 002$ | $0 \cdot 446 \pm 0.003$ | $0 \cdot 1695 \pm 0.0007$ | $3 \cdot 9$ |
| $\mathrm{O}_{3}$ | oxygens | $0.918 \pm 0.002$ | $0.492 \pm 0.003$ | 0. $06698 \pm 0.0007$ | $3 \cdot 9$ |
| $\mathrm{O}_{4}$ |  | $0.799 \pm 0.001$ | $0.276 \pm 0.002$ | $0 \cdot 1193 \pm 0.0006$ | 2.9 |
| $\mathrm{O}_{5}$ | Water | $0.592 \pm 0.001$ | $0.723 \pm 0.002$ | $0.0469 \pm 0.0006$ | $2 \cdot 8$ |
| $\mathrm{O}_{6}$ | octahedra | $0.535 \pm 0.002$ | $0.325 \pm 0.002$ | $0.0673 \pm 0.0006$ | $3 \cdot 2$ |
| $\mathrm{O}_{7}$ | about $\mathrm{Co}_{1}$ | $0.305 \pm 0.002$ | $0.557 \pm 0.003$ | $0.0216 \pm 0.0006$ | $3 \cdot 3$ |
| $\mathrm{O}_{8}$ | Water | $0.885 \pm 0.002$ | $0.159 \pm 0.002$ | $0.2823 \pm 0.0007$ | $2 \cdot 3$ |
| $\mathrm{O}_{9}$ | octahedra | $0.886 \pm 0.002$ | $0.740 \pm 0.002$ | $0.2832 \pm 0.0007$ | 2.7 |
| $\mathrm{O}_{10}$ | about $\mathrm{CO}_{2}$ | $0.8 .58 \pm 0.001$ | $0.949 \pm 0.003$ | $0 \cdot 1771 \pm 0 \cdot 0006$ | $3 \cdot 3$ |

Table 5. Interatomic distances in $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$
Standard deviations are about $\pm 0.03 \mathrm{~A}$

|  |  |  |  |  |  |  | Wat | xygens |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sulfate | gens |  |  | about C |  |  | about $\mathrm{Co}^{2}$ |  |
|  | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{4}$ | $\mathrm{O}_{5}$ | $\mathrm{O}_{6}$ | $\mathrm{O}_{7}$ | $\mathrm{O}_{8}$ | $\mathrm{O}_{9}$ | $\mathrm{O}_{10}$ |
|  |  |  |  |  | f $2 \cdot 11$ | f $2 \cdot 05$ | \{ $2 \cdot 14$ |  |  |  |
| $\mathrm{CO}_{1}$ |  |  |  |  | (2.11 | 12.05 | \{2.14 |  |  |  |
|  |  |  |  |  |  |  |  | f $2 \cdot 13$ | \{ $2 \cdot 12$ | f $2 \cdot 11$ |
| $\mathrm{CO}_{2}$ |  |  |  |  |  |  |  | ( $2 \cdot 13$ | $\{2.12$ | ( $2 \cdot 11$ |
| S | 1•46* | 1•44* | 1•51* | 1.45* |  |  |  |  |  |  |
| $\mathrm{O}_{1}$ |  | $2 \cdot 36$ | $2 \cdot 40$ | $2 \cdot 40$ | $2 \cdot 77 \dagger$ |  |  | $2 \cdot 79 \dagger$ |  | $2.79 \dagger$ |
| $\mathrm{O}_{2}$ | $2 \cdot 36$ |  | $2 \cdot 43$ | $2 \cdot 37$ |  |  |  | $2 \cdot 65 \dagger$ | $2 \cdot 69 \dagger$ |  |
| $\mathrm{O}_{3}$ | $2 \cdot 40$ | 2.43 |  | $2 \cdot 40$ | $2 \cdot 72 \dagger$ | $2 \cdot 68 \dagger$ | $2 \cdot 93+$ |  |  |  |
| $\mathrm{O}_{4}$ | $2 \cdot 40$ | $2 \cdot 37$ | $2 \cdot 40$ |  |  | $2.78 \dagger$ | $2 \cdot 86 \dagger$ |  |  | $2 \cdot 76 \dagger$ |
| $\mathrm{O}_{5}$ | $2.77 \dagger$ |  | $2.72 \dagger$ |  |  | f $2 \cdot 89$ | $\{2.90$ |  |  |  |
|  |  |  |  |  |  | ( 2.99 | $\{3 \cdot 10$ |  |  |  |
| $\mathrm{O}_{6}$ |  |  | $2 \cdot 68 \dagger$ | $2.78 \dagger$ | $\left\{\begin{array}{l}2.89 \\ 0.99\end{array}\right.$ |  | $\left\{\begin{array}{l}2 \cdot 94 \\ 2 \cdot 90\end{array}\right.$ |  |  |  |
| $\mathrm{O}_{6}$ |  |  | $2.68 \dagger$ | 2.78 | 2 2.99 |  | ¢ $2 \cdot 99$ |  |  |  |
| $\mathrm{O}_{7}$ |  |  | $2 \cdot 93 \dagger$ | $2 \cdot 86 \dagger$ | \{ $2 \cdot 90$ | $\{2.94$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\int 3 \cdot 00 \dagger$ | \{ $2 \cdot 94$ |
| $\mathrm{O}_{8}$ | $2.79 \dagger$ | 2.65 $\dagger$ |  |  |  |  |  | $2 \cdot 97$ | $\left\{\begin{array}{l}3.007 \\ 3.03\end{array}\right.$ | $\{3.04$ |
| O9, |  | 2.69† |  |  |  |  |  | f $3 \cdot 00 \dagger$ | $2 \cdot 99$ | f $2 \cdot 96$ |
| $\mathrm{O}_{9}$ |  | $2 \cdot 69 \dagger$ |  |  |  |  |  | 13.03 |  | ( 3.03 |
| $\mathrm{O}_{10}$ | $2.79 \dagger$ |  |  | $2 \cdot 76 \dagger$ |  |  |  | $\left\{\begin{array}{l}2.94 \\ 3.04\end{array}\right.$ | $\left\{\begin{array}{l}2.96 \\ 3.03\end{array}\right.$ |  |
|  |  |  |  |  |  |  |  |  | ( 3.03 |  |

The sulfur atoms and ten sets of oxygen atoms occupy the general $8(f)$ positions:

$$
\begin{aligned}
8(f) & x, y, z ;-x,-y,-z ;-x, y, \frac{1}{2}-z ; \\
& x,-y, \frac{1}{2}+z+C \text { centering. }
\end{aligned}
$$

A Fourier projection of the $h 0 l$ data of $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ was calculated and the $x$ and $z$ parameters of the cobalt, sulfur and oxygen positions were evaluated. The $y$ parameters were estimated from expected $\mathbf{S}-\mathbf{O}$ bond distances in the sulfate ion and $\mathrm{O}-\mathrm{O}$ distances about the hydrated cobalt ion.

Least squares refinement utilizing the full matrix (Busing \& Levy, 1959) was performed for a total of 13 cycles on the IBM 704 computer. Atomic form factors of $\mathrm{Co}^{++}$(Watson \& Freeman, 1961), neutral S (Tomiie \& Stam, 1958), and neutral O (Hartree \& Hartree, 1939) were used in these calculations. 836
intensity data were used, 737 of which were obtained from a crystal rotated about the [101], and 99 of which were obtained from the zero layer of a [010] rotation. 18 scale factors, 34 positional parameters and 13 isotropic temperature factors for a total of 65 parameters were varied. The overall $R$ factor, where $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \times 100 / \Sigma\left|F_{o}\right|$, was $54 \%$ before refinement commenced, dropped to $42 \%$ after the first refinement and then dropped steadily to the final value of $13 \%$. The necessity to run so many cycles was in part due to certain blunders in the original estimate of the $y$ parameters for the oxygen atoms. The final $R$ factors are as follows:

$$
\begin{aligned}
& R(\text { including zeros })=13 \cdot 0 \% \\
& R(\text { omitting zeros })=10.9 \%
\end{aligned}
$$

The data from the [101] setting are shown in Table 3.

The atomic parameters are shown in Table 4. By an oversight the dispersion correction $\Delta f^{\prime}$ of about -1.8 electrons (for $\mathrm{Fe} K x$ ) was omitted from the cobalt form factor. As a result, the temperature factors for cobalt in Table 4 are larger than the true values by an unknown amount.

## Discussion of the structure and hydrogen bonding

The structure consists of discrete $\mathrm{SO}_{4}^{--}$tetrahedra and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}$octahedra, Fig. I. There are just enough water molecules to satisfy this octahedral hydration of each cobalt ion.


Fig. 1. Packing of $\mathrm{SO}_{4}{ }^{--}$tetrahedra and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{++}$octahedra. The encircled numbers are the parameters of the Co and $S$ atoms in the $a$ direction.

Hydrogen bonds are assigned to the twelve shortest oxygen-oxygen distances (Table 5) after disregarding these between oxygen atoms of the same sulfate ion or of the same coordination octahedron. This assignment is checked by consideration of the hydrogen atom configuration and bond angles. Except for one water molecule $\left(\mathrm{O}_{9}\right)$ each water has two hydrogen bonds to sulfate oxygen atoms. Water molecule $\mathrm{O}_{9}$ has one such bond and also a bond to atom $\mathrm{O}_{8}$. In

AC15-79
this bond geometry, there is only one configuration of hydrogen atoms with two hydrogen atoms on each water molecule. The angles between hydrogen bonds at these water molecules (Table 6) range from $97^{\circ}$ to $126^{\circ}$ and are within the range found for other hydrated sulfate crystals. The hydrogen bonds make angles of $111^{\circ}$ to $124^{\circ}$ with the water-cobalt vectors. The third hydrogen bond to $\mathrm{O}_{8}$ makes angles of $80^{\circ}$ and $117^{\circ}$ with the two hydrogen bonds for which $\mathrm{O}_{8}$ provides the hydrogen atoms.

Table 6. Hydrogen bond angles
$\mathrm{O}_{1}$ through $\mathrm{O}_{4}$ are sulfate oxygens $O_{5}$ through $O_{10}$ are water molecules

| Atoms | Angles |
| :---: | :---: |
| $\mathrm{O}_{1}-\mathrm{O}_{5}-\mathrm{O}_{3}$ | $117^{\circ}$ |
| $\mathrm{O}_{3}-\mathrm{O}_{6}-\mathrm{O}_{4}$ | 105 |
| $\mathrm{O}_{3}-\mathrm{O}_{7}-\mathrm{O}_{4}$ | 126 |
| $\mathrm{O}_{1}-\mathrm{O}_{8}-\mathrm{O}_{2}$ | 97 |
| $\mathrm{O}_{2}-\mathrm{O}_{9}-\mathrm{O}_{8}$ | 116 |
| $\mathrm{O}_{1}-\mathrm{O}_{10}-\mathrm{O}_{4}$ | 124 |

The hydrogen bond lengths are 2.65 to $2.93 \AA$ for the bonds to sulfate and $3 \cdot 00 \AA$ for the water-water


Fig. 2. Hydrogen bond network in $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$. The numbers are tho parameters along the $a$ axis of the $\mathrm{Co}, \mathrm{S}$, and O atoms. The complete environment about each of the two different $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{++}$and $\mathrm{SO}_{4}^{---}$is shown.
bond. The shortest non-bonded oxygen-oxygen distances other than edges of the octahedra, are $3 \cdot 13 \AA$ between $\mathrm{O}_{7}$ pairs (through a center of symmetry) and $3 \cdot 22 \AA$ between $\mathrm{O}_{9}$ and $\mathrm{O}_{4}$.

We find no reasonable alternative to this hydrogen configuration, and the entropy discrepancy is not explained by our work.

The hydrogen bonds tie the sulfate ions and water octahedra together in a three-dimensional network as indicated in Fig. 2. In this figure, the hydrogen configuration is indicated by small circles on the hydrogen bonds. Because of the bond angles the hydrogen atoms are expected to fall slightly off these lines joining oxygen atoms. We do not have a direct determination of the hydrogen positions from the diffraction data.

The two cobalt ions, $\mathrm{Co}_{1}$ and $\mathrm{Co}_{2}$, have point symmetries $\overline{1}$ and 2 respectively. The water octahedron about $\mathrm{Co}_{1}$ is hydrogen bonded exclusively to sulfate ions. The $\mathrm{Co}_{2}$ water octahedron has ten hydrogen bonds to sulfate ions and four involving water molecules of neighboring $\mathrm{Co}_{2}$-type octahedra.

The average interatomic distances are as follows:

| $\mathrm{S}-\mathrm{O}\left(\mathrm{SO}_{4}^{--}\right)$ | $1 \cdot 46 \AA$ |
| :--- | :--- |
| $\mathrm{O}-\mathrm{O}\left(\mathrm{SO}_{4}^{--}\right)$ | $2 \cdot 39 \AA$ |
| $\mathrm{Co}-\mathrm{O}\left(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{-+}\right)$ | $2 \cdot 11 \AA$ |
| $\mathrm{O}-\mathrm{H}-\mathrm{O}($ hydrogen bond $)$ | $2 \cdot 79 \AA$ |

Several other substances have the same structure as $\mathrm{CoSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$. In addition to the two magnesium compounds, $\mathrm{CoSeO}_{4} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$, and one form of $\mathrm{NiSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ are isomorphous (Groth, 1908). This structure has been recognized in nature as the
minerals hexahydrite, $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and bianchite, $\mathrm{ZnSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ (Palache, Berman \& Frondel, 1952).

A more thorough study of the structure of $\mathrm{MgSO}_{4}$. $6 \mathrm{H}_{2} \mathrm{O}$ is in progress, and the location and refinement of the hydrogen parameters in that crystal will be the topic of another article shortly.

We thank Dr Rao and Prof. Giauque for their unpublished thermodynamic data and for valuable discussions.

## References

Busing, W. R. \& Levy, H. A. (1959). Oak Ridge National Laboratory Report 59-4-37.
Goszner (1907). Ber. deutsch. chem. Ges. 40, 2374.
Свотн, P. (1908). Chemische Kristallographie, v. 2, 426. Leipzig: Engelmann.
Handbook of chemistry and Physics (1957). 39th Ed., 521. Cleveland, Ohio: Chemical Rubber Publishing Co.
Hartree, D. R. \& Hartree, W. (1939). Proc. Roy. Soc. A, 238, 229.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Marignac, Ch. De (1855). Arch. sc. phys. et nat. Genève, (1), 14, 234. Ouevres 1, 381.

Palache, C., Berman, H. \& Frondel, C. (1952). Dana's System of Mineralogy. Vol. II, p. 492. New York: Wiley.
Rao, R. V. G. \& Giauque, W. F. (1960). Private communication.
Ruben, H. W., Templeton, D. H., Rosenstein, R. D. \& Olovsson, I. (1960). J. Amer. Chem. Soc. 83, 820. Thorpe \& Watt (1880). J. Chem. Soc., London, 37, 102. Tomile, Y. \& Stam, C. H. (1958). Acta Cryst. 11, 126.
Watson, R. E. \& Freeman, A. J. (1961). Acta Cryst. 14, 27.

# The Crystal Structure of $\mathrm{Ce}_{\mathbf{2 4}} \mathrm{Co}_{11}$ * 

By Allen C. Larson and Don T. Cromer<br>University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 5 February 1962)

The structure of $\mathrm{Ce}_{24} \mathrm{Co}_{11}$, the most cerium-rich compound in the $\mathrm{Ce}-\mathrm{Co}$ system, has been determined by single crystal X -ray methods. The compound is hexagonal, space group $P 6_{3} m e$ with $a=9 \cdot 587$ and $c=21.825 \AA, Z=2$. The structure was solved by applying Buerger's minimum function. Nearly all of the Ce atoms have rather close Co neighbors, some Ce-Co distances being as short as $2 \cdot 61 \AA$.

## Introduction

Vogel (1947), in a study of the cerium-cobalt phase diagram, reported $\mathrm{Ce}_{3} \mathrm{Co}$ as the most cerium rich compound in the system. Coffinberry (1960) prepared

[^1]alloys of this composition but was unable to obtain a single phase, excess cerium always being present. In fact, alloys containing as much as $30 \mathrm{at} . \%$ cobalt contained a small amount of excess cerium. It was not possible to establish the exact formula of this cerium rich compound by using metallographic techniques although it was known that the composition was approximately $30 \mathrm{at} . \%$ cobalt.


[^0]:    * Work done under the auspices of the U.S. Atomic Energy Commission.

[^1]:    * Work performed under the auspices of the U.S. Atomic Energy Commission.

